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Abstract. Electrical and optical properties of binary inhomogeneous media are currently
modelled by a random network of metallic bonds (conductagceoncentratiorp) and dielectric

bonds (conductance;, concentration - p). The macroscopic conductivity of this model is
analytic in the complex plane of the dimensionless ratie o1/0¢ of the conductances of both
phases, cut along the negative real axis. This cut originates in the accumulation of the resonances
of clusters with any size and shape. We demonstrate that the dielectric response of an isolated
cluster, or a finite set of clusters, is characterized by a finite spectrum of resonances, occurring
at well defined negative real values/gfand we define the cross section which gives a measure

of the strength of each resonance. These resonances show up as narrow peaks with Lorentzian
line shapes, e.g. in the weak-dissipation regime ofRlie-C model. The resonance frequencies

and the corresponding cross sections only depend on the underlying lattice, on the geometry
of the clusters, and on their relative positions. Our approach allows an exact determination of
these characteristics. It is applied to several examples of clusters drawn on the square lattice.
Scaling laws are derived analytically, and checked numerically, for the resonance spectra of
linear clusters, of lattice animals, and of several examples of self-similar fractals.

1. Introduction

Frequency-dependent electrical and optical properties of inhomogeneous media are often
modelled by networks of random complex impedances. The case of binary composite
media has attracted a lot of attention (see [1] for a review). Each bond of a regular
lattice is independently attributed a random complex, frequency-dependent conductance (or
admittance) according to the binary law
o with probabilit
ooy =17 " probabliy p (1.1)
o1 with probability 1— p.
The dimensionless complex ratio of the conductances of both phases,
h="t (1.2)
00
and the concentratiop are the essential parameters of the model.
The |h| « 1 regime describes several situations of interest. As far as static (DC)
properties are concerned, tlke = 0 limit embraces the two well known cases of the

| Corresponding author. E-mail address: luck@amoco.saclay.cea.fr

0305-4470/96/164781+21$19.5QC) 1996 IOP Publishing Ltd 4781



4782 J P Clerc et al

conductor—insulator mixturér; = 0), and the superconductor—conductor mixtirg= 0o).
In both limiting situations the macroscopic conductivilyexhibits critical behaviour around
the percolation thresholgd,,

Z(01=0) ~ oo(p — po)' (p = p)

(o9 =00) ~ o1(pc — p)~° (p—p.)
wheres andt are universal critical exponents.

Frequency-dependent (AC) electrical and optical properties of metal—dielectric mixtures
have attracted much interest recently. Two models have been mostly investigat®d(the
model and thek L—C model [1]. The dielectric component is modelled by perfect capacitors,
while the metallic bonds consist of a resistance in the first case, of an inductance in series
with a resistance in the second case. ThE—C model has been proposed to describe
optical properties of several kinds of inhomogeneous materials, such as cermets [2]. These
materials undergo an optical transition at some vaiie> p. of the metallic fraction,
where their dielectric constant changes over from inductive to capacitive. In beth
and RL—C models, the frequency dependence of the ratis such that the low-frequency
regime corresponds t@&| <« 1 (see section 2.2).

In the critical region, namely for smalt and near the percolation threshold, the
conductivity obeys a universal scaling law of the form

T ~ oolp — pel' @+ (hlp — pc|~C1) (hl < Llp—pl<l (1.4)

where = refers to the sign ofp — p.).

The present work aims at a better knowledge of the analytic structure of the conductivity
in the complexh-plane, for any fixed concentration. In spite of its apparent academic
character, this point is essential for a quantitative understanding of both the transient
response of th& — C model to a time-dependent excitation, and the resonance spectrum of
the RL—C model [1]. Hereafter we shall mostly focus our attention on the second situation.

Consider first a finite network, defined by putting on the bonds of a graph conductances
which assume two valuesyp or o1. The conductance of this network between any two
nodes assumes the forth= oo F (h), where F(h) = N(h)/D(h) is a rational function of
the complex ratidz, i.e. N(h) and D(h) are polynomials, whose degrees are roughly equal
to the number of bonds of the network. Furthermore the zeros of the conductance (i.e. the
zeros ofN) and its poles (i.e. the zeros 6f) are negative real numbers, and they alternate,
namely there is exactly one zero between any two consecutive poles, and vice versa. These
properties are at the origin of various analytic representations and rigorous inequalities for
the conductivity and the dielectric constant of random media. This body of knowledge is
currently referred to as the Bergman—Milton theory [3].

As a consequence, the singularities of the macroscopic conductivity take plage for
real negative, so that is analytic in the compleX-plane cut along the negative real axis.

We introduce the notation

(1.3)

Disc S (h) = Tl(E(h +i0) — S(h —i0)) = 2IM = (h + i0) (1.5)

for the discontinuity of the conductivity along this cut.

It is interesting to first look at the prediction of the effective-medium approximation
(EMA). This old and very commonly used approximate scheme [4—6] amounts to resumming
the one-impurity effects in a self-consistent way. In the case of the square lattice the EMA
formula reads

$EMA) _ ao<(p ~Ha-m+ \/(p _ %)2(1_ h)2+h>. (1.6)
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This expression shows that the conductivity is cut along a finite intemggh,[/imax, with

1+4p(1—-p)+4/p1-p)
(2p — 1)?

2.7)

hminv hmax = -
and that its discontinuity reads
Disc X &M = 200|p — 1|v/(hmax — 1) (h — hin) (hmin < h < hmay). (1.8)

It has been argued [1] that the exact conductivity of the random binary model has a
cut with a non-vanishing discontinuity along the whole negative real axis. The bulk of the
discontinuity is expected to be roughly given by (1.8), while its tails are expected to be
much weaker, and to become exponentially small as elther 0~ or h — —o0, in analogy
with the Lifshitz tails of the density of states of electrons and phonons in disordered solids
[7]. The following law for D-dimensional lattice problems has been proposed in [1]:

DiscX ~ exp(—C|h|~P/?) (h - 07) (1.9)

while a more recent investigation [8] rather suggests the above law, formallyDvithl,
independently of the dimensiah.

We propose to get a novel kind of physical insight into the cut of the conductivity, by
viewing it as a result of the accumulation of the resonances of clusters or sets of clusters
of any size and shape. The analysis of the complex conductivity oRtheC model in
terms of resonances has been tackled in [1,8-10]. The present work provides a quantitative
analysis of the dielectric resonance spectrum of any cluster drawn on a regular lattice. The
case of the square lattice is considered for definiteness. The set-up of this paper is as
follows. Section 2 contains general results on the resonance frequencies of arbitrary finite
clusters and sets of clusters, drawn on the square lattice, as well as the associated resonance
cross sections. Several applications are then presented in section 3, including two coupled
bonds, linear clusters, arbitrary clusters of a given size (lattice animals), and examples of
self-similar fractal clusters. Section 4 contains a short discussion.

2. General results

2.1. Definitions

The aim of this section is to present a general approach to the resonant dielectric response
of clusters embedded in a regular lattice. In the followinguster is any finite connected

set of bonds drawn on a lattice, andset of clusterds a finite collection of such clusters.

We denote bynp the total number of bonds (links) contained in a cluster or in a set of
clusters, andg its total number of sites (vertices, or nodes). For the sake of simplicity, we
restrict ourselves to the two-dimensional square lattice, spanned by the unit egterg.

We take the lattice spacing, i.e. the length of the bonds, as our length unit.

In order to study the dielectric response of a set of clusters, we consider the geometry,
shown in figure 1, of a rectangular sample of sex N, between two straight parallel
electrodes. The bonds which belong to the set of clusters, shown as thick lines and referred
to as impurity bonds, are assumed to have a complex, frequency-dependent conductance (or
admittance)r;, while the other bonds of the lattice, shown as thin lines and referred to as
matrix bonds, have a different conductarge The complex ratidh of both conductances,
defined in (1.2), will play a central role in the following.

Our starting point is the Kirchhoff equation for the electric potentials,

> 0wy (Ve — Vy) =T, 2.1)

y(@)
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< M - Figure 1. Schema of the sample used in this work.

We employ the following notationsr = x;e; + x2ex = (x1, x2) iS any site of the lattice,
and y(z) denote the four nearest neighbouring sitescofi.e.y = = £ e,, with u =1
or 2. The electric potential at site is denoted by, ando, , = o, is the conductance
of the bond joining the neighbouring sitas and y. Finally the source ternf, is the
current flowing from the generator into the network through neglét is non-vanishing
only whenx belongs to either electrode.
Both V,, andZ, have to be solved from (2.1), with the boundary conditidfgs= 0 on
the left electrodgx € Ep), andV, =V = ME on the right one(x € E;), with £ being
the uniform electric field applied to the sample. The complex conductance (or admittance)
between the electrodes reads

Y= 2.2
» 22)
whereZ is the total current across the sample,

I==-)Y I,=)Y I, (2.3)

IEED xekEq

2.2. TheRL—-C model

One situation of special interest is tl.—C model of inductive (and weakly dissipative)
clusters in a dielectric matrix, already mentioned in section 1. The bonds of the clusters
consist of an inductanck in series with a weak resistan®& while those of the matrix are
perfect capacitancas. The complex conductances at frequenty: w/(27) thus read

B 1
" R+ilLw’

Along the lines of [1,2,9,10], we introduce the microscopic resonance frequency
(plasmon frequency)

op = iCw o1 (24)

1
wy = ——— 25
°= Jic (5)
and the quality factor
1 /L L 1
0=_.]2 =5 (2.6)
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which is a dimensionless measure of the dissipation rate. We also introduce the reduced
frequency
y=— 2.7)
o
so that
1 1
= . = . . (2.8)
—LCw?+iRCw —y2+4iy/Q
In the following, we shall mostly consider the regime of a weak dissipation,
corresponding to a large quality factor. In this regime, we therefore have
1 i
h~ —— — —— 0O>0D. (2.9
2 0y®
We recalled in section 1 that(k) is a rational function, with alternating poles and zeros
along the negative real axis. Since the variablas given by (2.9) is very close to this
negative real axis foQ > 1, we can anticipate that the poles and zeros lying there will
strongly affect the frequency-dependent responsg bfC clusters, in the form of narrow
resonances. This is what we shall now demonstrate explicitly.

h

2.3. Resonance frequencies

We define the resonances of a cluster, or a set of clusters, as the valuesicti that the
conductance’ (k) vanishes, in the limit of an infinitely large network. This definition will
be justified in section 2.4.

At a resonance, equation (2.1) must have a non-trivial solutigriocalized around the
clusters, in the absence of sources. This equation Hyjth- O can be recast as

~(AV)e=(L=h) Y (Va—Vy). (2.10)
yeC(x)

The notationy € C(x) means that the bonde, y) belongs to the set of clusters, and
denotes the finite-difference Laplace operator on the square lattice, defined as

—(AV)e =) (Vo = Vy). (212)
y(x)
The solution of (2.10) with appropriate decay properties at infinity reads
MWe=" " Gay(Vy—Vz) (2.12)
yeC zeC(y)
where we have set
1
A= 2.13
i % (2.13)

and whereG, , = G(x — y) is the Green function of the Laplace operator on the infinite
square lattice. Its main properties are recalled in the appendix.

By expressing the consistency of (2.12) febeing a site of the cluster set, we arrive
to the following characterization of the resonancedias to be an eigenvalue of the square
matrix M, of sizeng x ng, defined by

Mw.,y = Z (Gx,y - Gac,z)- (2.14)
zeC(y)

This matrix is not symmetric. It can nevertheless be recast, using a bond representation, in
the form of a real symmetric matrix of sizg; x ng, whose spectrum is manifestly real [10].
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The ng eigenvalues of the matrik lie in the range 0< A < 1. Only those different
from the endpointgi # 0 and 1) correspond to physical resonances. We denois;, lige
number of these non-trivial eigenvalues, which we assume to be ordered as

O<)¥l<)¥2<"'<)\n;¢<1~ (215)

Even for a single cluster, there is no simple relationship between the numbers of sites, of
bonds, and of resonances, apart from the inequalities n; < ng. Furthermore, some of
the eigenvaluea, may be degenerate, i.e. occur with a non-trivial multiplicity.

The spectrum of dielectric resonancgs(a = 1, ..., ng) of a given set of clusters thus
only depends on the shape of the clusters, and of their relative positions and orientations. In
the weak-dissipation regime of theL—C model, introduced in section 2.2, the resonances
occur at well defined resonance frequencigs= w,/(2r), given by

1 2 w2 . A
= Ya = a l.e. w, = wo a

A, = = =
1—nh, y3+l a)g—}—a)g 11—,

(0> 1. (2.16)

2.4. Resonance cross sections

We now turn to the determination of the analytic form of the conductan@s, in the
regime of a weak dissipationQ > 1). We restrict the analysis to the case where the
linear sizesM and N of the sample are much larger than the diameter of the set of clusters
under consideration, so that the resonances are very close to those determined in section 2.3,
corresponding to clusters embedded in an infinite lattice. Section 4 contains a qualitative
discussion of finite-size corrections.

Let M be the matrix associated with the clusters, andMletla = 1,...,ng) be its
non-trivial eigenvalues. We assume, for the sake of simplicity, that all eigenvalues are
non-degenerate. For each eigenvalye we denote by, y,, andw, the corresponding
values of the various variables defined above, the last two pertaining t8 tk€ model
(see (2.16)). We also introduce the associated left and right eigenvédgtasd R, with
componentd, , andR, , in the site representation (2.14). These eigenvectors are supposed
to be normalized in such a way that

Le Ry =) LoaRaz=0as (a,b=1,...,ng) (2.17)
xeC
with 3, , being the Kronecker symbol.
We look for a solution of the Kirchhoff equation (2.1) in the form
Ve=Ex1+ Wy (2.18)

where the first term is the potential in the absence of the set of clustersxwitbing the
coordinate of the node along the applied field, andW,, is a perturbation of the potential,
localized around the clusters, and vanishing on the electrodes. The Kirchhoff equations for
the potentialW, on the clusters can be recast as

AWe =D My Wy =EY Mg yyn. (2.19)

yeC yeC

Wheneveri comes close to one of the eigenvalugsof the matrix M, the solution of
equation (2.19) diverges as

Wa ~ A(M)Raa (2.20)
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with R, being the corresponding right eigenvector. The divergent prefattdy is then
determined by multiplying the corresponding left eigenvediprthrough (2.19). We thus
obtain

AG)~ g, (o A (2.21)
A=Ay
with
Li=Y x1Laa. (2.22)
xeC

This quantity is independent of the position of the set of clusters inside the sample, owing

to the identity) ", - L... = 0. The total current across the sample is then evaluated as

he —1
M

7= O’o(Ng + Z (x1 —yD)(Wy — Wy)> (2.23)

(xz,y)eC

The conductance of the sample in the regime of a weak dissipation can now be estimated
by superimposing the independent contributions of all resonances to the intensity. We are
thus left with the following formula:

N 1 & h,
Y(h) ~ —opl 1 a 2.24
(h) MGO<+MN;yh—ha> (2.24)
with
L.Ra
=0 2.25
T @ =) (2.29)
and
Ra = Z (x1 — yl)(Ra,a: - Ra,y)~ (226)
(z,y)eC

Equation (2.24) is our main result. The prefactdf/M)oy is the conductance of the
matrix sample, in the absence of the clusters. To this background response are superposed
the ng resonances of the set of clusters. In agreement with the general properties recalled
in section 1, each resonance shows up as a doublet, consisting of a pole situated: at
and a zero situated at~ h,(1 — y,/(MN)).

The strength of each resonance is measured by the distance between the pole and the
zero, i.e. by the residug,h,/(MN). It is inversely proportional to the ared N of the
sample, and proportional to the parametgrthat we call thecross sectiorof the resonance.

The latter is indeed interpreted as the area of the region around the clusters where the
perturbationW,, of the potential at resonance takes appreciable values.

The general result (2.24) can be made more explicit in@hg> 1 regime of theRL—

C model, introduced in section 2.2. In this situation, it is advantageous to consider the
impedanceZ = 1/Y of the sample. The latter quantity reads, in terms of the reduced
frequencyy of equation (2.7),

M 1 i 1/(2Q) —i(y — ya)

Z~ —i .
NCwoy | 2N2Cawo 247 (y = y)2 + 1/(40?)

(2.27)

The real (dissipative) part of the impedance exhibits narrow resonance peaks, having
Lorentzian line shapes, with a common absolute width
o

Aw=—.
w 20

(2.28)
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Both the maximal value at resonance
Ya O

(ReZ)max ~ N2Can (2.29)
and the area under the resonance peak
TTYa

.= ReZ dw ~ 2.30

A /m, “ = 2neC (2.:30)

depend on the clusters and on the resonance under consideration only through the cross
sectiony,.

2.5. Duality symmetry

Duality is one of the key concepts of the theory of planar graphs (see [11] for an overview).

It has far-reaching consequences in two-dimensional statistical physics (see [12] for a
review). The applications of duality to random resistor networks have been reviewed in [1].
The dual of the network of figure 1 has its electrodes along the horizontal siflesd N

are interchanged), and the dual clusters are obtained by drawing a dual bond across each
bond of the original ones. Figure 2 shows some illustrative examples of clusters with their
duals. Cased) demonstrates that the dual of a connected cluster may be disconnected.

Figure 2. Three examples of clusters (full
lines), together with their duals (broken lines).

(a)

The duality symmetry of the square lattice implies the identity
Y(WY(h) =1 (2.31)
between the conductances of the original network and of its dual, with bond conductances
related througlty = 1/00, 61 = 1/031, SO thath = 1/h. By inserting the result (2.24) into
the identity (2.31), we obtain the following predictions. The resonances of the dual set of
clusters are located at the dual positions,

ha =1/hy i€ hg=1—Ag, or By = Wi/ wq (2.32)
and any pair of dual resonances have identical cross sections,
J7u =Ya- (233)

As an illustration we close up this general section by giving in table 1 the positjoofs
the resonances, and the associated cross segtipf the three clusters shown in figure 2.
Cluster &) is a generic example. Clustdp)(is self-dual, i.e. isometric to its dual, so that
its resonances come in dual pairs. Clust®rhas two peculiarities, namely it possesses a
closed loop and its dual is not connected.

3. Applications

3.1. One bond

Consider first the simplest of all clusters, consisting of only one bond, joining the origin
x =0tox’ =e,. The bond is parallel to the applied field far= 1, and perpendicular to
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Table 1. Positions of the resonanceg, and associated cross sectigns of the clusters shown

in figure 2.
Cluster Resonances Cross sections
(a) A1 =0.23605 y; =5.18968

A2 =0.31285 1y, =217581
A3 =059706 y3=242350
A4 =0.85404 y,=0.10714

(b) A1 =0.13067 1 =1.08684
A2 =0.30756 1y, = 0.48889
A3=050000 y3=101794
A4 =0.69244 1y, = 0.48889
A5 =0.86933 y5=1.08684

(© A =024692 y = 129772
A2 =058281 1y, =1.11399
A3 =064009 y3=517747
A4 =0.68901 y4 = 0.49606
A5 =084116 y5=0.12694

it for © = 2. The corresponding matriM only involves two values of the Green function,
Go and G4, given by equation (A.5). We thus get

M=1 <_11 _11> 3.1)
with eigenvalues

A= Ao =0. (3.2)
Only 11 leads to a resonance, lying at

hy=-1 (3.3)
i.e. w = wp for the RL—C model. The associated cross section reads

y1=45,1 (3.4)

with §,, 1 being the Kronecker symbol. We thus haxe= 4 for u = 1 (the bond is parallel
to the applied field), angl; = 0 for u = 2 (the bond lies along an equipotential line).

The latter property is quite general. Clusters consisting only of vertical bonds,
perpendicular to the applied field, do not perturb it at all. Their resonances thus have
vanishing cross sections.

3.2. Two bonds

Consider now two bonds, in arbitrary relative position and orientation, namely one joining
the pointsz = 0 andz’ = e, and one joining the pointg = (y1, y2) andy’ = y + e,,
with ©,v =1 or 2.
The corresponding matrid is
i —3 Gay = Gay Gay —Gay
Gory—Gry Gupy—Guy

1

(3.5)

< e
[
Q@
8 8
e &
(.
Q@
8 B
S
VS
I

FNFE
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Its eigenvalues read

with
8§=Gaoy—Goy —Goy+Guy
= Gu.u(y) = G(y) - G(y + eu) - G(y - eu) + G(y + e, — ep,)~ (37)
Only A; and ., lead to resonances, lying at
1—2¢ 1+2¢ 1
hy = — hy = — =—. 3.8
1T T 142 2T T 1-2¢  m (3.8)
The associated cross sections are
2(8/4 1+ 81} 1)2 2(8/4 1— 811‘1)2
- : . = s Y 3.9
V1 1—4g2 V2 1—4g2 (3.9)
In the limit where both bonds are infinitely far ap&gt= 0), we obtain two degenerate
resonances ak = —1. If the bonds are at a large but finite distang¢g| > 1), the
estimate (A.6) shows that the coupling between both resonances is approximately
2 1 YuYv
g~ — |n|y|=<5,v—2“ )<<1. (3.10)
27 9y dyy 2 ly2 \ " ly|2
The resonances are thus symmetrically shifted by a small amount,
hi, hy = —1:|:4g (311)
hence, in the case of theL—C model,
w1, wp X wo(1F 2g). (3.12)

3.3. Linear clusters

Another case of interest is that of linear clusters. Consider a horizontal linear cluster
consisting ofng = n consecutive bonds, joining the siteg;, with x = 0,...,n. The
entries of the corresponding matii4 only involve the Green functioty,., with the notation

of the appendix. They are symmetric for generic values of the site labels,

Myy=2G,—y —Gy_y-1— Gy yy1=F(x — ) y=1,...,n=-1) (3.13)
together with the non-symmetric boundary values
Mx,O =G, -G, Mx,n =Gy — Gerlfn- (314)

The positions of the resonances and the corresponding cross sections can be determined
analytically for the first few values of the size
e n = 1. This is the one-bond case, investigated in section 3.1.
e n = 2. This is a special case of the two-bond case investigated in section 3.2,
corresponding taw = v = 1 andy = e;, hence
§=2G1—Go=3;—2/m. (3.15)
The general results (3.6), (3.8, (3.9) yield
A =1-—2/7 =0.36338 A2 =2/ = 0.636 62 rA3=0
hy=-2/(x —2) = —1.7519 hy=1-m/2=-057080 (3.16)
v = 72/(r — 2) = 8.6455 y2 = 0.
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e n = 3. The matrix

-G, 2G1— G2 2G,— G1—G3s G3—G;
_ G —2G, 2G1— G Gy — G,
M= G,— G, 2G1— G —2G, G, (317)
G3— G, 2G,—G1—Gs 2G1— G» -G,
has eigenvalues
A= (7—16/7 —w)/4=0.28216 Ay =8/ —2=054648
1=( / )/ 2=18/ (3.18)

A3=(7T—16/m +w)/4=067136  )s=0

with w = +/384/72 — 224/ + 33 = 0.77841, hence
hy=—16/7 +w —3)/(7— 16/7 —w) = —2.544 11
hy = —(3-8/n)/(8/mr — 1) = —0.82990 (3.19)
hy=—(16/7 —w — 3)/(7 — 16/7 + w) = —0.48951
We have also evaluated the associated cross sections analytically, namely
64(1+ w)(1 - 3/m)
~ w(l6/7 +w—7)(24/7 —w — 7)(16/7 + w — 3)
2 =0 (3.20)
64(1 — w)(1—3/7)
T w(—16/7 + w + )(24/7 + w — 1)(16/7 — w — 3)
e 1 > 1. The resonance spectrum of very long linear clusters can also be investigated
as follows. The bulk matrix entries (3.13) only involve an even functfaiy — y) of the
distance between nodes along the cluster. As a consequence, theMha@pproximately
a Toeplitz matrix, which is diagonalizable by means of the Fourier transformation. The

eigenvaluex is given in terms of a wavevector (or momentug)by a dispersion relation
of the form

= 14.633

21

= 0.16406

V3

+00

Mg)= Y F(xe'". (3.21)

The expression (A.2) of the Green function leads to
Zdp  1-—cosg _J1—cosq  |sin(q/2)|
o 2m 2—Cc0Sq — COSp 3 —cosg /1+sirt(q/2)

For a large but finite linear cluster, the waveveeias quantized. It assumesdiscrete
values in the range & ¢ < 7, approximately given by

nqg ~ aw (a=1,...,n). (3.23)

The positions of the resonances are therefore asymptotically distributed according to the
smooth density

Mg) = (3.22)

1dg 2
mdh gl-A)VI-—222
Two limiting situations deserve our attention.
() In the long-wavelength regim& — 0), which corresponds to low frequencies in
the RL—C model, we have the linear dispersion la¥g) ~ ¢/2, hence the constant density
of resonances

(3.24)

o(A) = ; (A — 0). (3.25)
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The scaling behaviour of the resonance spectrum in this regime will be investigated from a
more general viewpoint in section 3.6.

(i) In the opposite limit(g — ), A approaches a non-trivial maximal value
AL =1/4/2=0.70711 (3.26)

Near this upper band edge of the dispersion law, the density of resonances (3.24) exhibits
an inverse-square-root van-Hove divergency.

The resonances of linear clusters thus extend over the range 0 < A, i.e.

—o0 < h < hg, with h; = —(+/2 —1). The resonance spectra of the first 14 linear
clusters are shown in figure 3.

We close up with a few words about the resonance cross sections of linear clusters.
First, the vanishing of», for the linear clusters witk = 2 andn = 3 (see, respectively,
equations (3.16) and (3.20)) is in fact quite general. Indeed, because of the left—right
symmetry of linear clusters, the eigenvectors of the maitihave a definite parity. We
haveR, ,—+ = (=1)*R,, and a similar symmetry property for tteg,, henceR, = 0 for a
even. The cross sectior therefore vanishes for every evenand everyn. Furthermore,
in the long-wavelength regimg <« 1, i.e.x < 1 ora < n), the eigenvectorg, , andR, «
are given by superpositions of plane waves (éxpk), and thus approximately uniformly
extended over the cluster. Hence both amplitudgsand R, scale as the size, so that
we obtain the following scaling form of the cross sections

Ya ~n°A, (a odd n > 1) (3.27)

where the A, are numbers of order unity. This scaling law will be given a simple
interpretation in section 4.

3.4. Lattice animals

A lattice animal (or an animal, for short) is by definition any connected cluster drawn
on a given regular lattice. The problem of lattice animals has been an active field of
statistical mechanics, one of the main motivations arising from cluster-expansion techniques
for percolation and other problems in lattice statistics [13]. Just as percolation, the lattice-
animal problem can be formulated either in terms of site occupation, or of bond occupation.
The problem of bond animals is more suited to conduction properties. It consists of
considering, with equal statistical weights, all clusters drawn on the lattice, made of a
given numbermg = n of bonds. The questions which have attracted most attention so
far concern the asymptoti: — oo) behaviour of the total number of animals, and of
geometrical characteristics, such as their mean radius of gyration.
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Table 2. Total numbersV, of lattice animals ofz bonds, up tormax = 11.
n N,

2

6

22

88

372
1628
7312
33466
155446
730534
3466170

PO OWO~NOU A WNE

e

We have investigated the resonance spectra of animals drawn on the square lattice. To
do so, we have generated all lattice animals, umdgx = 11, by adapting to the bond
problem [10] an algorithm known for the site problem [14], and evaluated numerically the
resonances of each animal. The total numbérof animals of size: are listed in table 2.

This quantity grows asymptotically as
N, ~ % (3.28)
n
where the universal /b power-law is an exact result in two dimensions [15], while the
connectivity constant, here ~ 5.208, depends on the underlying lattice.

Figure 4 shows histogram plots of the resonance spectra of all animals consisting of 7, 9,
and 11 bonds. Several peaks are clearly visible. Two of the most salient ones are shown on
the plots, namely the upper band-edge(3.26) of the linear clusters, and the upper band-
edge of theT'-shaped clusters (i.e. the long linear clusters decorated by one bond branching
perpendicularly at any place), that we have evaluated numerically to be at0.837 81.

3.5. Connections with the random binary model

We now come to the question addressed in section 1, on the relationship between the
singularities of the conductivity of the random binary network in the complgkane, and
the resonances of isolated clusters. We restrict ourselves again to the analysis to the case
of the square lattice.

A systematic way of addressing this question is to consider the regime of very diluted
impurities,

c=1-p<k 1 (3.29)

The conductivity has been shown [16-18] to admit a power-series expansigrofrthe
form

X (h, ¢) = oo(1+ by(h)c + ba(h)c? + - --) (3.30)

where the coefficient®, (k) only depend on the lattice under consideration and on the
conductance ratif. It is worth noticing that the series expansion (3.30) is different from the
weak-disorder expansion of the conductivity as a power series in the successive cumulants
of an arbitrary (smooth) distribution of the bond conductances, investigated in [19].
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The coefficients of the power-series expansion (3.30) are constrained by the duality
symmetry of the square lattice. Indeed, by inserting this expansion into the thermodynamic
version of the identity (2.31) [1],

2(h, )2/ h, ) = o (3.31)

independently of the concentratiorof impurity bonds, we can derive an infinity of relations
for the functionsb, (), namely

bi(h) +b1(L/h) =0 ba(h) + ba(1/ h) = ba(h)? (3.32)
and so on.

e The first coefficient;(h) only involves one-impurity effects. It is therefore correctly
predicted by the EMA formula (1.6), which yields
2(h—1)
_ 3.33

h+1 ( )

e The higher-order coefficients of the expansion (3.30) are far more difficult to calculate.
The determination aob,(k), which contains two-impurity effects, has been performed on the
cubic lattice [16], on the square lattice [17], and on the hypercubic lattice in any dimension
D, by means of a two-impurity improved EMA-like scheme [18]. Coming back to the

square lattice, the most appropriate expressioh@f) for the present purpose reads [18]

bi(h) = b (h) =

Gy, ()]

bo(h) = Lby(h)2 + by (h)® 9,

2(h) = 3b1(h) 1(h) (m,u)X;é‘ZO,l) 1—[b1(h) Gy (x)]?
[G1ri(@)]3

—ba()* )

x#0

1—[b1(h)Gra(m)]? (3.34)
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This result is obviously more intricate than the EMA prediction

4h(h —D*  bi(h)*(b1(h) +2)
(h+13 4 '

For instance, in the case of insulating impurity bords= 0), equation (3.34) yields
b5(0) = —0.210 749, whileb$™* (0) vanishes.

First of all, the results (3.33), (3.34) obey the identities (3.32). This is obvious,for
while more involved symmetry arguments are needed to check this properby, fatong
the lines of [19].

The result (3.33) shows that the coefficiénth) has a pole ak = —1, corresponding
to the resonance (3.3) of the one-bond problem. Similarly, (3.34) showsibiat has
an infinity of poles, situated abi(h) = +1/G,,,(x), corresponding to all resonances
of the two-bond configurations, determined in section 3.2. Indeed (3.8) can be recast as
bi(h) = +1/g.

This observation can be generalized to the following rule [10, 18]. Forkany 2,
the coefficientb,(h) of the power-series expansion (3.30) has an infinity of poles along
the negative reak-axis, corresponding to all resonances of all sets of clusters consisting
altogether ofk bonds. This shows in particular that the conductivity of the random binary
model is singular along the whole negative real axis of the comipleariable. Indeed our
investigations of the resonance spectra of linear clusters and of lattice animals demonstrate
a dense accumulation on the negative real axis.

b (h) = (3.35)

3.6. Fractal clusters

This last section is devoted to the resonances of large clusters drawn on the square lattice,
including fractal ones. It turns out that the spectra of large fractal clusters generically exhibit
a scaling power-law behaviour in the« 1 regime, i.e. forn <« ng. We shall explain this
phenomenon in a heuristic way, making use of our intuition of the low-frequency response
of RL—C clusters, where. ~ (w/wg)?.

Consider a large but finite patch of a fractal cluster, of diamétegmbedded in the
square lattice. The numbers of its sites, bonds, and resonances scale as

I’ls’\’}’lB’\’nR’\’gDF (336)

where Dy < 2 is the Hausdorff (or fractal) dimension of the cluster.

The investigation of the resonances of linear clusters, performed in section 3.3, has
shown that the resonances far « 1 are characterized by coherent long-wavelength
excitations along the cluster. We propose to generalize this picture to clusters of arbitrary
shape, and to assert that the lowest resonance is generically given by

1
L((Z)C(Z)wg
whereL (£) andC (£) are the effective inductance and the effective capacitance of the cluster,
considered as a whole:

e The effective inductancé. (¢) of a cluster obeys the same scaling behaviour as its
end-to-end resistance,

L(£) ~ R() ~ ¢'Y (3.38)

(3.37)

Amin ~ (a)min/a)o)2 ~

wheret /v is the usual notation coming from finite-size scaling theory for the percolation
problem (see, for example, [1]).
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Figure 5. Construction rules of the fractal clusters considered in section 3.6.

e In contrast, the capacitanag(¢) of the cluster is assumed to be insensitive to its
internal structure. In two dimensions it is therefore independerit ed that we obtain

Amin ~ €71, (3.39)

This scaling law can be extended to all resonances suchitkatl, i.e.a < ng, by
expressing that in this regime, only depends on the label through the dimensionless
combinationa/ng <« 1. We thus get

o ~ (a/ng)* (a K ng) with ¢ = . (3.40)
VDF
An equivalent statement consists in writing the scaling law
p(r) ~ A~1HLe r— 0) (3.41)

for the density of resonances of the infinite fractal structure.

For linear clusters, we have/lv = Dr = 1, so that¢ = 1, in agreement with the
analytical results (3.23), (3.24).

We have also investigated three examples of deterministic self-similar fractal clusters,
which we call the worm, the cross and the gasket. Their iterative construction rules are
shown in figure 5, while the resulting clusters are shown in figure 6. At each step of the
construction, the number of bonds is increased by a constant factehile the diameter
of the cluster (in units of the bond length) is multiplied by a scaling fabtofAfter k steps
of iteration, the fractal cluster of thith generation thus consists of ~ a* bonds, while
its diameter scales as~ b*. As a consequence, the fractal dimension of these clusters is

Dr =Ina/Inb. (3.42)

The exponent/v of the end-to-end resistance is trivial in the first two examples, which
possess no closed loops. Its value for the gasket has been known for a long time and has been
rederived, e.g., in the review [1]. The values of the various scaling factors and exponents
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(a) (b)
Worm (k=7) Cross (k=4)

o~
o
~—

Gasket (k=7)

Figure 6. Largest generation whose resonance
spectrum has been evaluated numerically, for
(a) the worm, b) the cross, andc] the gasket.
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Table 3. Scaling factors and exponents of the fractal clusters considered in section 3.6.

Fractal a b Dp t/v s

Worm 3 NG 2In3/In5=1.36521 2In3In5=1.36521 1

Cross 5 3 In3In3 = 146497 1 In3In5=0.68261
Gasket 3 2 In3In2 = 1.584 96 IN5/3)/In2 =0.73697 IN5/3)/In3 = 0.46497

for the three fractal clusters are listed in table 3. We have evaluated numerically the
resonance spectra of successive generations of these three fractal clusters, by diagonalizing
the associated! matrices, up to a maximal scakg.x corresponding to a few thousand
bonds. Figure 7 shows logarithmic plots of the resonance positions agdimst< 1, for

the two largest scales of each type of cluster. Power laws clearly show up, with exponents
¢ in agreement with the prediction (3.40), listed in table 3.
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(a)

Worm
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¢ k=7 (n,=2187)

(b)
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© k=3 (n,=500)
* k=4 (n,=2000)
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P gy
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-35 Figure 7. Logarithmic plot of the small-
40 i A range of the resonance spectra of the two
largest generations of) the worm, b) the
-45 : : cross, and @) the gasket. The slopes of the
4 v 6 S5 -4 8 -2 full lines are the exact theoretical valuesgf
In a/n . )
R listed in table 3.

4. Discussion

We have investigated the resonances which show up in the conductivity of a connected
cluster, and of a finite set of clusters, drawn on the square lattice and embedded in a large
rectangular sample. Our central result (2.24) shows that the conductivity is characterized
by a finite number; of resonances, located at well-defined negative real vdljed the

ratio 2 of the conductivities of both phases. This formalism is chiefly aimed at describing
the resonant dielectric response of clusters within Riie-C model.

The strength of each resonance is measured by a cross segtigiven by (2.25).

The cross section is naturally interpreted as the area of the sample over which the
cluster significantly perturbs the applied fiefd at resonance. A slightly different and
complementary viewpoint is as follows. Each factyr or R, of (2.25) has the dimension

of a length. It can be interpreted as a measure of the strength of the dipole induced on the
cluster by the applied field, so that the cross sectipis proportional to the square of the
induced dipole. The result (3.20) shows, however, that there is no simple algebraic relation
betweenl, andR, in general, and that, is not mathematically a perfect square.

This interpretation of the cross section sheds some light on several aspects of this work.
First, the coupling constagt (3.10) between the resonances of two distant bonds coincides
with the interaction energy of two dipole® and D’ in two-dimensional electrostatics,
namely

27

E:—(D.V)(D/.V’)I%Trz ! (D;ZD/—z(D'r)rgD/'r)>. (4.1)
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The n?-law (3.27) for the cross sections of long linear clusters is also simply understood
as follows. Fori « 1, i.e. at low frequency for th&® L—-C model, the clusters respond
coherently, so that the induced dipole is proportional to the siz©ur interpretation of

the cross section also allows a qualitative discussion of the finite-size corrections to our
predictions. The most important of these effects consists in a shift of the spectrum of
resonances. For a large but finite sample of 3ize N, the elements of the matriM differ

from those corresponding to the infinite square lattice by terms of order land 1/ N?,
proportional to the interaction energy (4.1) between the dipole induced on the cluster and its
mirror images with respect to the boundaries of the sample. The resonances are therefore
shifted by a small amount of order/M? and 1/N?, with respect to their theoretical
positionsh,.

The present analysis can be extended to the problenctoloarred clusterconsisting of
different kinds of metallic bonds. Assume that each bond of the cluster has a conductance
Oy = O0hgy, Where theh, , are given arbitrary complex numbers. A generalization of
equation (2.10) shows that the resonance condition now reads

detl —N)=0 4.2
whereN is anng x ng matrix, defined by
Nw,y = Z (1 - hy,z)(Ga:,y - Gw,z)- (43)
zeC(y)

The condition (4.2) yields a polynomial relation between AQg,. A simple illustration is
given by the linear cluster consisting of two neighbouring bonds with conductance ratios
hy andh,. We thus obtain the relation

(L+h) L+ h2) = (1 —4/7)%(1 — h)(1 — hy). (4.4)

If all bonds of the cluster are identical, i.e, , = h, we haveN = M/A. The eigenvalue
criterion is thus recovered. In our example, (4.4) figr= h;, yields back the result (3.16).

We have also investigated the smaltegion of the resonance spectra of large clusters,
including fractal ones, embedded in the square lattice. The scaling laws (3.40), (3.41),
established in a heuristic way, have been checked analytically by means of the dispersion law
pertaining to linear clusters, and numerically on several examples of self-similar fractals. We
would like to emphasize that these scaling laws cannot be generalized in a straightforward
way to clusters embedded in a higher-dimensional lattice. This can be demonstrated
explicitly in the case of linear clusters. On the hypercubic lattice in dimensiprihe
dispersion relation for a small wavevect@r <« 1) reads

gP-1 2 " (D <3
P q 2 2,2
me/———g——~ 2% (D=3 (4.5)
(2 )D—l 2 + 2
" e q° (D > 3).

This result implies the existence of an upper critical dimendipr= 3, at least in the case
of linear clusters.

It should also be noticed that the present results only concern the dielectric resonances
of finite clusters embedded in an infinite matrix, which consists of a regular lattice. The
resonance spectra of deterministic models for fractal structures, such as the incipient
percolation cluster, investigated in [20, 21], have very different characteristics. In the latter
case both phases have comparable sizes and geometries, so that the notions of cluster and
matrix are no more pertinent. The spectra of such model systems are themselves generically
fractal. They are supported by a Cantor set of the negativeiraals, instead of the whole
axis in the present situation.
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To close up, we come back to our initial motivation, namely a better understanding of the
analytic structure of the conductivity of the random binary model, both in the conductance
ratios and in the concentration variabgeor ¢. First of all, and from a qualitative viewpoint,
the present analysis confirms that the cut of the conductivity in the compf@ane can
be viewed as the accumulation of the resonances of clusters and sets of clusters with any
size and shape, and that it extends over the whole negative real axis. The more quantitative
analysis of section 3.5 shows that every coefficignt:) of the expansion (3.30) of the
conductivity has itself a countable infinity of poles, associated with the resonances of all
embeddings, connected or not, lofbonds in the square lattice. The present work leaves
several open questions, such as, for example, a more accurate form for the Lifshitz tail
(1.9). It, however, shows in a very suggestive way how intricate the exact conductivity
of the binary model can be on a finite-dimensional lattice, especially as compared to the
simple and very commonly used EMA formula.
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Appendix

In this appendix we summarize the main properties of the Green’s function of the finite-
difference Laplace operatak on the square lattice, which are useful in the body of this
paper. The reader is referred to [22] for a more comprehensive exposition.

The Green functiorG,, , = G(x — y) is by definition a solution of

—AG(x) = 840 (A.1)

with 3, o being the Kronecker symbol. The difference equation (A.1) has a unique solution
with all required symmetries, up to an additive constant, which we fix by sefii@y = 0.

We obtain by Fourier transformation

d?p er-v _1
(2m)2 K(p)

where the double integral runs over the first Brillouin zaBg—n < p1, p2 < 7), and
where

Goy=G6G@x—y) =G1—y,x2—y2) = f (A.2)
B

K (p) = 2(2 — cosp; — COSp2) (A.3)

is the Fourier transform of—A).
The values of5 (x) along the diagonals, namely fer = +n, can be evaluated explicitly
from the representation (A.2) by means of elementary integrals. One thus obtains

3 2n—1

The values ofG(x) all over the square lattice can then be determined recursively from
(A.1), starting from the knowledge of the values (A.4) [22].

G(&n, £n) = —% (1+ 1y 1) (n > 1). (A.4)
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Introducing the short-hand notatian, = G(xm, 0) = G (0, +m) for the values of the
Green function along the co-ordinate axes, we have

Go=0 Gy=—3 G,=2/m —1=-0.36338

A5
Gz =12/7 — Y/ = -0.43028 (A5)
and so on.
Finally, the Green function admits the long-distance expansion
1 3 8x2x2 — |z|*
G(x)~—— |In “In2 —r2 o 1). A.6
@~y [ntal+ (G2 ye )+ 2220 e )

The leading isotropic logarithmic term is nothing but the Green function of the differential
Laplace operator in the plane, which represents, for example, the potential of a point charge

in two-dimensional electrostatics. The finite part involves Euler's consgtant 0.577 21.
The first anisotropic correction, due to lattice effects, is of relative ordes|d
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